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On the theory of growing cavities behind hydrofoils 

By L. C .  WOODS 
Engineering Laboratory, University of Oxford 

(Received 12 July 1963 and in revised form 15 November 1963) 

A general theory of unsteady cavitating flow past hydrofoils and other obstacles 
is given for the case of cavities of finite length L. If the circulation I?, the cavity 
volume V and L are known as functions of time, the theory yields explicit 
formulae for the velocity over the wetted surface and for the cavitation number (T. 

The theory is based on the approximation that the cavity is bounded by stream- 
lines, and so is valid only for slow rates of change of L,  V and I?. The possibility 
of allowing for the presence of a vortex sheet behind the cavity is discussed. The 
theory is extended to the case of a cascade of hydrofoils behind which extend 
growing cavities. 

Two examples of the theory are discussed, namely the unsteady flow past a 
symmetrical wedge, and the unsteady flow past a flat plate hydrofoil cavitating 
from the leading edge. 

1. Introduction 
Unsteady cavitating flow is perhaps the least developed branch of incompres- 

sible fluid dynamics, and even in two-dimensional problems the number of 
references, at  least in British and American journals, is not large. The main 
difficulty of the subject lies in the rather involved boundary conditions, and in 
the fact that the free boundaries enclosing the cavity are material lines and not 
streamlines. A further complicating feature is the fact that growing cavities 
require a sink at  infinity to accommodate the displaced liquid and this in turn 
leads to logarithmically infinite pressures at  infinity, a point we shall return to 
shortly. Unfortunately the author is not familiar with the Russian contributions 
to this field, although the excellent Russian progress in hydrofoil development 
suggests that unsteady problems have received considerable attention. The 
references cited below, therefore, are merely those the author has found useful in 
developing his own work. 

Unsteady cavitating flows, in which the cavity extends to infinity, have been 
studied by Woods (1955), and applied to a problem involving an oscillating stalled 
aerofoil and to the impulsive motion of a flat plate (see Woods 1961, pp. 454-77). 
Curle (1956a, b) has also made contributions to this subject. On finite cavities 
one can cite Gilbarg’s (1953) paper extending some earlier work of von KBrmAn 
on symmetrical cusped cavities (negative cavitation number v). Gilbarg pointed 
out that it is physically reasonable to assume that the errors introduced by re- 
placing the material lines by streamlines are negligible for slowly varying flows. 
Woods (1953) extended Gilbarg’s work to apply to Riabouchinsky flows (cavity 
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between two bodies), for which g has positive and therefore physically realistic 
values. However, both Woods and Gilbarg neglected the sink at  infinity, 
necessarily present if cavity volumes are changing, and in a private communica- 
tion Dr M. J. Lighthill questioned the validity of a theory which neglected an 
obviously important feature of unsteady flow. 

This defect is removed in this paper and the author’s earlier work on finite 
cavities is extended to apply to asymmetric flows, so that the unsteady flow 
past a hydrofoil of general shape can be considered. The theory is applied to 
the case of accelerating symmetric flow past a two-dimensional wedge, and for 
the particular case of constant cavity volume, the results obtained agree with 
those due to Cumberbatch (1961) obtained by a different method. 

The main gap in the present theory is lack of knowledge of how Q, the rate of 
change of cavity volume, is linked to such phenomena as the vaporization rate on 
the cavity walls, and the rate at  which the vapour and gases in the cavity are 
removed by entrainment a t  the rear end of the cavity. However, as Dr T. Brooke 
Benjamin has pointed out to the author (see following paper, Brooke Benjamin 
1964), in a real flow Q will necessarily depend on factors outside the scope of a 
two-dimensional theory. There is bound to be an inflow or outflow in the (finite) 
spanwise direction of the quasi two-dimensional flow past a hydrofoil, and Q 
will depend on this three-dimensional effect. And further in three dimensions, 
the logical difficulty of the need to have infinite pressures at  infinity in order to 
produce a growth in the cavity volume will not arise. In  his paper Brooke 
Benjamin shows how one can match a three-dimensional solution for the ‘out- 
field’ with the two-dimensional ‘infield’ solution. Thus in the present paper, 
which deaIs with the latter problem, Qft )  must be regarded as an a r ~ ~ t r u r ~  
property of the idealized two-dimensional flow, and the solution given is then 
a valid representation only of the near flow field. 

This paper was read at the International Symposium on Applications of the 
Theory of Fuiictions in Continuum Mechanics, September 1963, at Tbilisi, 
Georgia, U.S.S.R. 

2. The boundary-value problem 
In  the z-plane of figure 1 is shown the hydrofoil, with a wetted surface &,AS, 

and a cavity S,CHB’C’S,. Over the surface CBB‘C’ rapid changes occur in the 
velocity and direction of the flow, corresponding to the usual turbulent mixing 
and entrainment region at  the end of the cavity. This region will be assumed 
small compared with the rest of the cavity, and we shall be content to prescribe 
the velocity over its surface so as to secure only one essential feature of a real 
cavitating flow, namely hhe closure of the bubble. The free surfaces SIC and 
S,C‘ are at constant pressure at  a given instant of time, and in unsteady flow 
they are composed of material lines rather than streamlines; however, as we are 
mainly interested in the downstream development of the cavity, little error will 
be introduced by assuming that the free surfaces are stream surfaces. The error 
due to this approximation will be largest at the rear of the cavity, where the 
motion of the surface is at  a large angle to the fluid motion. 
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With this approximation then, we can take the curves AX,CB and AS,  C'B' 
to lie on the streamline $ = 0 and so arrive at  the w-plane (where w is the complex 
stream function) shown in the figure. Notice that because of circulation the points 
B and B' do not correspond in this plane. The w-plane is mapped into the semi- 
infinite strip - 7~ < y < ?T, 0 < 7 < co ([ = y + i r )  of the [-plane shown in figure 1 

w = 2 a ( c o s a - - c o s ( ~ + a ) + ( ~ + ~ a ) s i n a } ,  (1)  
by 

z-plane, z = x  + ;Y 

w-plane, w= 4 +i+ 

D, 

-n+ 62 

{-plane, 6 = y +iV 
FIGURE 1. The independent variables. 

where w = 0, y = -3a, defines the position of the front stagnation point A ,  
and the (clockwise) circulation is 

For small values of J? the potential difference between the front stagnation point 
and the rear of the cavity is approximately4a,i.e. the over-all lengthof the hydro- 
foil and cavity is 

where V is an average velocity along the streamline AS,CB. The surfaces of the 
hydrofoil and cavity are mapped on to 7 = 0, while the trailing edge streamline 
CD, is mapped on to the curve 7 sin a + sinh 7 sin ( y  + a)  = 0. When the circula- 
tion, and hence a, is small, these curves lie close to y = f r, so that boundary 
conditions on CD, can be applied on y = k 7~ with little error (cf. the boundary 
approximation of linear perturbation theory for aerofoils). 

Let (g, 6') be the velocity vector in polar co-ordinates, with 6' measured from the 
flow direction at infinity, and let 

r = 4nasina. (3 )  

L "- 4a/V, (3) 

7 = In (Udz/dw) = R + i8, R = In (U/q ) ,  (4) 
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where U is the velocity a t  infinity. Then T is an analytic function of c that satis- 
fies the following boundary conditions: 

Here Q is the rate at  which the volume per unit breadth of the cavity is increasing, 
i.e. Q is the strength of the sink at  infinity. 

In  (i), O,(y) is assumed to be a known function of y, but with curved wetted 
surfaces this function will not be known exactly (see remarks in 94). To deter- 
mine Q,(y) to use in (ii) we shall use Bernoulli's equation, and the fact that the 
cavity pressure depends only on the time. Condition (iii) is obvious; (iv) ensures 
that there is no stagnation point at  the rear of the cavity, i.e. that the cavity is 
locally cusped. In  (v) the circulation is taken about any contour %, completely 
enclosing the hydrofoil and cavity, and moving with the fluid. Recall that in 
unsteady a,erofoil theory, the presence of a vortex sheet springing from the (solid) 
trailing edge B (see figure 1) and lying along the streamline BD,, prevents one 
deforming % so as to alter the fluid element R, say, at which V? intersects BD,. 
As R is convected downstream, 9 is continuously enlarged. In  general it is also 
necessary in the present hydrofoil problem to postulate the existence of a vortex 
sheet along BD,; otherwise it would not be possible to change the steady lift 
force 

9 = pUI' = 4aUnpsina, (5) 

on the hydrofoil to another (steady) value. For this reason we have made allow- 
ance in (vii) for a discontinuity in q-and hence in Q-across BD,, or rather 
across y = f 77 (see remarks following (3)). Note that corresponding to (5) there 
is a steady drag force D acting on the hydrofoil and wake together given by 

D = -pUQ. (6) 

In  (viii) we have the obvious closure condition for the hydrofoil-cavity 
'body'. Finally (ix) expresses the discontinuity in w = $ + iqL- about a circuit 
like %, the point [ = ql having to move with the fluid if I' on the right-hand side 
is to be independent of the time t. Notice that if (ix) is to be satisfied it is neces- 
sary to assume that dw/d< is of the form 

dw/d< = iae-i(c+a)+ (%r)- l ( I ' - iQ) -iiaei(c+a)+0(Qe2ic), ( 7 )  
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at infinity, i.e. near < = ico. When Q = 0, (7) is in agreement with (1) and if it is 
assumed that the relation between the z- and <-planes is exactly as indicated in 
figure 1, the approximation of replacing material lines by free streamlines is 
equivalent to neglecting the effect of Q on the form (1)  takes on q = 0, i.e. on 

q5 = Sa{cosa - cos (y+  a )  + ( y  + ?;a) sin a}. (8) 

For example (1) and (7) agree if - iQC/Sr  is added to (I), and this choice does not 
affect (8) at all. However, in general q5 will depend rather weakly on Q, especially 
if QIUL 4 1, and the theory to be given below neglects this dependence. It 
should be noted that the approximation introduced here is in the mapping 
relating the planes of the independent variables (w and <); our dependent variable 
is r ,  which is related to the derivative of w with respect to z, and therefore the 
dependence of r on Q found later in the paper is not-at least to first order in 
&-inconsistent with the neglect of Q in the (w, <)-relationship. Further com- 
ments on this important approximation will be given in 9 5 .  

3. The general solution 
The solution to the rather complicated boundary-value problem defined by 

(i), (ii), (vi) and (vii) is readily found as a special case of a solution given by the 
author (Woods 1961, pp. 148-52) for an analytic function in a rectangle, satis- 
fying Riemann-Hilbert (mixed) conditions on a pair of opposite sides and semi- 
periodic conditions like (vi) and (vii) on the other pair of sides. With the para- 
meter e used in the author's text taking the values e = & in -7r < y < p2, e = 0 
in p2 < y < p1 and e = - & in p1 < y < 7r, and with the rectangle height increased 
to infinity, the solution just mentioned reduces to 

where 

and 

The awkward functions appearing in the last integral of (9) make it very difficult 
to develop further .the theory for the general case. With symmetrical bodies 
at  zero mean incidence, ImF(iq) = 0, and so the mathematical difficulties are 
reduced and some progress can be made with a vortex sheet present; this case will 
be discussed in a later paper. For the present we shall consider only those un- 
steady motions for which the effect of any vortex sheet, lying to the rear of the 
cavity, on the flow in the neighbourhood of the hydrofoil can be neglected. In  
this case the last integral in (9) can be omitted. 

Because of the factor sec &5 in (9), condition (iv) will be satisfied only if 
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a result that enables us to write (9) in the form (neglecting the vortex sheet term) 

Expanding (10) in a power series in eic, and noting from (ii) that the first term 
must be O(eic), we find that 

of which the imaginary part is the result already found from (iv), and 

7(<) = ieibYefc+O(e2ic),  (12) 

where 

and p 3 &u.,+,u2). Now (iv) can be written 

and on using (2), (7) and (12) in this integrand we find that 

2 sin a - i&/(%a) = ei(B-a)Y. (15) 

T;lre must now calculate Q&). As our choice of origin for $ makes a$/at zero 
at the front stagnation point, Bernoulli’s equation can be written 

2 a$ 
(&)2 = l + G - - -  -, u3 at 

where G- = (Po - P c ) / ( W 2 )  - 1,  (17 )  

is the (time-dependent) cavitation number defined in terms of the stagnation 
pressure p ,  and the cavity pressure pe.  We choose the stagnation pressure in 
defining G-, rather than the pressure a t  infinity, because as remarked in 0 1,  
this latter pressure is infinite unless Q is zero. 

If the theory is restricted to cases for which 

( 2 / U 2 )  (a$/at) < 1 + 0- 

Qz,(y) = A - B cosy + C(y + sin y )  + Q’(y), 

(18) 

(cf. remark in $ 5 )  it  follows from (4), (8) and (16) that 

(19) 

where A = -~ln( l+G-)+b(cosa+3asina) ,  B = bcosa, 

and Q’(y) is zero except in the small intervals 

-€l+7r < y < 77, -77 < y < - 7 7 + € 2 ,  

9 Fluid Mech. 19 
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i.e. in the region CBB‘C’ at the rear of the cavity. The integral involving Q‘(y)  
will be simplified by assuming el and e2 to be small, so that 

Q’(y)  E ( y )  cosec +(y - g) dy N X sec $6, 
2n 

1 where X = - (cos &pl cos frp,)-i (In +s“-n) Q’(y) dy. 
2n -6,f-n --n 

This is equivalent to using a singularity to close the cavity. Incidentally an 
obvious physical restriction on Q’(y)  is that the singularity should provide no 
lift force to the combined hydrofoil-cavity ‘body ’. 

4. The principal equations 
The following notation will be adopted: 

c = cosp, s = sinp, p E &ul-p2),  h = & e + ( 1 + c e c 2 @  1, 

g = e- ~ P { z  In sin &,LL - i(7~ -p)>, 

I = c o s ~ - F ( ~ ) s e c $ ~ { c o s ( ~ + ~ ) + ~ o s / l } ,  

K = sin 6- F(5) sec +[{sin (<+p) + sin!] + 2iIn ( ( A  - eiaF)/(A + e-i&iL)}. 

b f fre-3iiP { 2  c + L e - W ( 3 $  - I)}, 

A = i(sin $(6-pz) cosec &(p1 - <)}&, 

-B 
FIGURE 2. Symmetrical cavity. 

Then when (19) is substituted into (10) the result can be written 

cosec ( ’ - ‘) dy + A - BI+ C K  + SF(<) sec 2&, (20) 

which is not, of course, valid near the singularity at  6 = ~f: 7 ~ .  

On expanding (20) near infinity we find that 

1 e-iy 
and Y = ;JF, O,(y) cos 1 ~ dy - BihA + i(b - i sin p) B 

2 y F ( Y )  

+ C[b + i sin p + ( 1  + c )  e-3iP + 2hgeiPI = ei(a-P) 

corresponding to ( 11)  and (15). 
With a symmetrical body and cavity as shown in figure 2,  these equations are 

much simplified. In  this case O,(y) is an odd function of y ,  while Q,(y) is an even 
function. Also /l, a and G are all zero. Equation (20) becomes 
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where I(5) = c o s ~ - 2 c o s + y F ( ~ )  and F(5) = {$(cos~-c)}~. Also for this case 

A = - + l n ( l + a ) + B ,  B = b .  

Equations (21.) and ( 2 2 )  reduce to 

(24) 

and iY = 2 p  -1 O , ( y ) c o s & y F 0 d y + ( 1 + c ) A - ~ ( 1 + c ) ( 3 c - ~ ) B  sin y = -. Q ( 2 5 )  
n o  27ra 

The integral over the wetted surface appearing in (20)) ( 2 1 )  and (22) can be 
evaluated with the assistance of the indefinite integrals 

2 F ( y )  sin &p cos 87 
7~ sin(&y-P) dy = - 7- e-3fF - 2ihJ(y, ico). and 

Notice from (26 )  that the integral in (20)  can be written 

( 2 7 )  

where R is the radius of curvature of the wetted surface. As Re7 = In (Ulq), 
this form enables us to change the real part of (20)  into a rather involved integral 
equation for q, which must, in general, be solved by an iterative procedure 
(see Woods 1961, pp. 449-54). When 8,(y) is a step function, i.e. when the body 
is a, polygon, this difficulty does not arise, for the integral on the right-hand side 
of (27) vanishes. 

(i) A symmetrical wedge 5 .  Examples 

The simplest example of the theory, but still one of considerable interest, is the 
symmetrical wedge (see figure 3 ) .  In  this case 8Jy) = - 8,( - y )  = a0, and (23)) 
(24) and ( 2 6 )  yield the general solution 

where J(O,(S) = - (2/n)tanh-l(sin&(~+p)coseC&(p-<)}~, and m = sin&. On 
expanding (28) near infinity, one finds, corresponding to (25)) that 

m - $( 1 -m2) In - (1 - m2) In (1 + a) + (1 -m2) ( 1  + 3m2) b. 

(29) 

-- 
2na rr 

9-2 
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These equations are exact; but we shall now apply linear perturbation theory to 
find some approximate results. 

From (1) q5 = 2a( 1 - cosy), so that if 1 is the length of the wedge and the angle 
a, is small, 1 21 (4a/U)m2, and by (3) 

a 2: $UL, so m 2: (Z/L)t. (30) 

For cavities long compared with the length of the wedge it follows from the above 

L .  - a + qp ( u + @U).  
equations that 

0 
----f----4 

c 

FIGURE 3. Symmetrical wedge. 

If CT = 0 ,  (18) will be satisfied provided L5 < U ,  i.e. provided that the rear of 
the cavity moves with a velocity much less than that of the liquid itself. And 
the restriction on Q/UL mentioned in $3 ,  viz. QIUL < 1, is a consequence of 
(18) and (31). 

The drag coefficient C, = D/(&U2),  where D is the drag per unit length of the 
wedge can be readily calculated for a wedge of small apex angle Ba,. Linear 
perturbation theory in this case yields 

{ (p -pc ) / (+pU2) )dx (y )  = 0 {a+t?Q-22B(1 -cosy)}sinydy, 
"1 /op 

c, = $J0fl 

by (3) and x ZI UL(1 -cosy). Here Q is the real part of (28). On carrying out the 
integration and then using (39) to eliminate In (1 + a)  a, we arrive at 

For the special case of constant volume cavities, Q = 0 ,  and we find that (as), 
(30) and (32) give results agreeing with Cumberbatch's (1961) theory, based on 
the acceleration potential, which for linearized theory is defined by 

(Pc -PI / (  PP3. 

The steady forms of (29) and ( 3 2 ) ,  i.e. the forms in which both Q and a/at  are 
zero, agree with formulae given by Wu (1957). 

For constant-volume cavities (see remarks in Introduction), (31) and (33) give 

(ii) F1a.t plute hydrofoil 

This case is shown in figure 4. The incidence is a,, and consequently 
B,(y) = - a, + nU(y + 2a), 
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where U(x) is the unit function. Then from (20)) (21) and (26) 

7(<) = - {ia, + nJ(  - 2a, <)} + F(<) sec +<{a0 sinp+ n Re [e-iPJ( - 2a, iw)]} 

-mJ see &<(AM(<)  + BN(<) - CT(<)),  (341 
where 

.TI(<) z 1 -F(<) see +<cosp, N ( < )  = I ( < )  + (cosp- Re h)  F({ )  see +{, 
and T(<) = K(<) + {sinp+ I m ( h - g ) } F ( { )  sec +<. 

- 
M e L-.- ___( 

FIGURE 4. Flat-plate hydrofoil. 

If a. is small, then a will also be small. Then ,ul 2: - 2% 2: 0 ,  ,uz = - 2,u and 
B = - &p. With the notation S2 = (a  + it+), so that 6 is a small number, we can 
write (34) in the form 

7(<) = - ;{ao + ?b[sin (+<+,u) cosec &<IS) - F(<) see +<[ao sin +,u + AM(5)  

+ BN(<) - CT(<)I.  (35) 
Expanding this near infinity we find that 

26 
(sin,u)$ 

a, cos + ~ +Asinp+BImh-GRe(h+g)  = 0, 

which serves to determine the value of 6. From (13), (15), (35) and (36) we find 
the relations 

- a o s + ~ c - ~ ~ ( 3 c - l ) c o s 2 ~ ,  (37) 
Q 

3na( 1 + c) 
, - 

2a 
1-c 
-- - a , ~  - As + iB(3c + 1) sin 2,u. 

Equation ( 3 7 )  plays the same role for the hydrofoil as (39) does for the wedge, 
while (38), together with (a), provide a formula for the circulation about the 
hydrofoil-cavity ‘body’. 

Finally note that for this case the equation corresponding to (30) is 
sinz/[, 21 1/L, 

and that the lift and drag on the hydrofoil can be calculated from 

C,+iC, = ( l+ ia  ) -  

where fi is the real part of (35). 

2R - 2B( 1 -cosy) )  sin y d y  
O :1/:,,Cg+ 

4. Extension of theory to a cascade of hydrofoils 
The extension of the foregoing theory to the cascade of hydrofoils shown in the 

z-plane of figure 5 is quite straightforward. Let a be the stagger angle, and H 
the gap distance; then €I U is the interval in the w-plane between corresponding 
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Y 

z-plane, z = x + iy 

- n+ iqo 

A r 
E' 

I * 

w-plane, w= 4 +i$ 

Fm 

tl E 

3 -plane, [ = Y + iq 
FIGURE 5. The conformal transformations for a cascade of hydrofoils. 
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points on adjacent hydrofoils. The relation between the w-plane and the c-plane 
can be shown to be (see Woods 1961, pp. 490-3) 

277 n 1 H U  2n ( +l',o,os ") 7 

HU w = ~ csin a + - (F - H U  sina) tan-1 (e-rtan $ {) - __ cos a ln  

(39) 
where r = (4u/HU), T = tanhr and u is a parameter approximately equal to 
BLU, corresponding to the number u introduced in (1). The point E ,  down 
stream at infinity is mapped on to y = T, 7 = 70,  where 

sech l;lo = tanh r = T, (40) 

while the point upstream at infinity is at 7 = 00 as before. The front stagnation 
point A is mapped on to y = - 6, and the rear (cusped) end B is mapped on to 
y = k n+6,, where 6, and 8, are given by the relations 6, = &+a, 6, = &-a, 
with6 = sin-l{(sinacoshr -cosatanB,)/sinhr}. 

The general solutions contained in (9) and (10) are still applicable, but (11) 
is now replaced by 

1: B,(y) -- cO>&? + s, Q,(y) cos Qy E ( y )  dy = a,  

as lim7 = ia. 

In  place of (15) we have 
7-03 

lim T = 7, = Q,+iB,, 
5--r+ivo 

where 7, is the value of T downstream at infinity. Thus from (10) 

an equation that ensures the closure of the hydrofoil-cavity body. In  place of 
(19) there is a similar equation based on the form (39) takes on 7 = 0. The general 
case is rather complicated; when I' and a are zero the equation in question is 

Qs(y) = A-Bln(l+Tcosy) ,  (43) 
HUb 
4nu 

where A _ _  ?jln(l+cT)+Bln(l+T), B = -. 

On substituting (43) into (9) and ignoring the vortex sheet term, we find 

where 

and 1' = ( ~ ~ ~ Q , u ~ c o s Q , u ~ ) ,  ,3= a(&+,&), p1 E 2tan-l(e-Ytsni,ul), 

j i 2  = 2 tan-1 (e-r tan ip2), 5 = (cos $pl cos +ji2)*. 
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For a cascade of wedges the solution is now given by replacing the integral in 
(44) by the first bracketed term on the right-hand side of (38); similarly, for a 
cascade of hydrofoils one uses the first bracketed term in (34). When linear 
perturbation theory is applicable, the lift and drag on a member of the cascade 
can be obtained from an equation like the last in § 5, except that U L  sin y dy 
must be replaced by d#,  where d# is the derivative of (39) on the wetted surface, 
7 = 0. 

My understanding of the problem treated in this paper has been greatly helped 
by discussions with Dr T. Brooke Benjamin. 
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